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Abstract - We study an inverse problem to identify nonlinear microstructured materials involving
nonlinearities in both macro- and microscales by means of information gathered from two solitary
waves with different velocities. We state a uniqueness and stability theorem for the inverse problem.

1. INTRODUCTION
Microstructured materials like alloys, crystallites, ceramics, functionally graded materials, etc. have
gained wide application. Determination of parameters of these materials is a problem of great practical
importance. For this purpose wave processes going on in macro-level could be used. For instance, in
[4] linear microstructured materials were identified by means of harmonic waves and Gaussian wave
packets.

The microstructure brings along dispersive effects in the wave propagation. In case the dispersion
is balanced by nonlinearity, solitary waves may emerge. Existence of solitary waves in microstructured
solids has been proved both theoretically [3, 5, 7, 8] and experimentally [7, 9]. This paper studies
an inverse problem to identify properties of nonlinear microstructured solids by means of information
gathered from two independent solitary waves.

We use a mathematical model of the microstructure, which was derived according to the Mindlin
ideas [6] by means of the hierarchical approach due to Engelbrecht and Pastrone [1]. Denoting by u
the macrodisplacement, the basic 1D governing equation for longitudinal waves reads

utt = buxx +
µ

2

(
u2

x

)
x

+ δ (βutt − γuxx)xx − δ3/2 λ

2

(
u2

xx

)
xx

. (1)

Here b, µ, β, γ and λ are coefficients related to the material properties and δ is a geometric parameter
related to the scale of the microstructure (for details see [5]). The inequalities

0 < b < 1 , δ, β, γ > 0 (2)

are valid for the parameters b, δ, β and γ. Eq. (1) involves hierarchically two wave operators utt −
buxx − µ

2
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)
x

and δ
(
βutt − γuxx − δ1/2 λ

2 u2
xx

)
xx

characteristic to the macro- and microstructure,
respectively. The influence of the macro- and microstructure to the wave propagation depends on the
size of the scale parameter δ [1, 5].

The related equation for the deformation v = ux reads

vtt = bvxx +
µ

2

(
v2

)
xx

+ δ (βvtt − γvxx)xx − δ3/2 λ

2

(
v2

x

)
xxx

. (3)

Our aim is to identify 5 coefficients b, µ, β, γ and λ in eq. (3) by means of data gathered from
solitary waves. The quantity δ is assumed to be known. Note that from the mathematical point of
view we could set δ = 1 redefining in a suitable way β, γ and λ in (3). But from the physical point of
view it makes sense to preserve δ in our computations to show the scale-dependence.

2. PROBLEM FORMULATION
Travelling wave solutions of (3) have the form v(x, t) = w(x− ct) where c is the velocity of the wave
and w = w(ξ) satisfies the equation

(c2 − b)w′′ − µ

2
(w2)′′ − δ(βc2 − γ)wIV + δ3/2 λ

2
[(w′)2]′′′ = 0 . (4)
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Since we are interested in solitary wave solutions vanishing at infinity, we are looking for w from the
space

W = {w : w 6≡ 0 ; w(i) − continuous in R, i = 0, . . . , 4 ; lim
|ξ|→∞

w(i)(ξ) = 0, i = 0, 1, 2}.

The existence and properties of the solutions in W were proved in [8] and in case λ = 0 also in [5].
Let us formulate two results from [5].

Lemma 1. If (4) has a solution in W then µ 6= 0, βc2−γ 6= 0, c2− b 6= 0 and c2−b
βc2−γ > 0. Moreover,

eq. (4) in W is equivalent to the following equation of the first order

(w′)2 − α(w′)3 = κ2w2
(

1− w

A

)
, (5)

where

κ =

√
c2 − b

δ(βc2 − γ)
, A =

3(c2 − b)
µ

, α =
2δ1/2λ

3(βc2 − γ)
. (6)

Theorem 1. Let µ 6= 0, βc2 − γ 6= 0 and c2 − b 6= 0. Eq. (4) has a solution in W if and only if

(
βc2 − γ

c2 − b

)3

>
4λ2

µ2
(equivalently, |Aακ| < 1) . (7)

In case (7) holds, the set of all solutions in W has the form {wC(ξ) = w0(ξ + C) : C ∈ R}, where
w = w0 ∈ W is an infinitely differentiable function in R, which has the following properties:

(a) ln |w(ξ)| ∼ −κ|ξ| as |ξ| → ∞;

(b) A−1w(ξ) ∈ (0, 1) if ξ 6= 0 and w(0) = A, i.e., A is the amplitude;

(c) Aw′(ξ) > 0 if ξ < 0, Aw′(ξ) < 0 if ξ > 0 and w′(0) = 0; w′ has exactly two relative extrema
occurring at ξ = ξ− < 0 and ξ = ξ+ > 0 such that w(ξ−) = w(ξ+) = 2A

3 ;

(d) |w′(ξ)| < 2|A|κ
3 < 2

3|α| for ξ ∈ R;

(e) |w(ξ)| > |w(−ξ)| for any ξ > 0 in case µλ > 0 (Aα > 0),
|w(ξ)| < |w(−ξ)| for any ξ > 0 in case µλ < 0 (Aα < 0);

(f) if λ = 0 (α = 0) then w(ξ) = A cosh−2
(

κξ
2

)
.

Note that if the nonlinearity in the microscale is included, i.e. λ 6= 0 then the solitary wave is
asymmetric (statement (e)). This is illustrated in Fig. 1 and 2.

We remark that a single solitary wave doesn’t contain enough information to recover all five
unknowns b, µ, β, γ, λ. Indeed, eq. (5) depends upon three parameters A, κ, α. Thus, measuring the
whole wave w(ξ) we can recover maximally A, κ and α. But system (6) has infinitely many solutions
b, µ, β, γ, λ for given A, κ, α and c2. Consequently, it is necessary to measure at least two waves with
different c2-s.

Let we be given two waves w[c1] and w[c2] with the velocities c1 and c2 satisfying the inequality
c2
1 6= c2

2. Let A1 and A2 stand for the amplitudes of these waves. Then, by (6) we obtain the system
3b + Ajµ = 3c2

j , j = 1, 2 for unknowns b and µ. The assumption c2
1 6= c2

2 implies A1 6= A2, hence this
system is regular. Consequently, the coefficients b and µ are uniquely determined by amplitudes of
two waves. Unfortunately, the amplitudes which depend only on b, µ and δ cannot be used to recover
the other unknowns β, γ, λ. Thus, we have to gather some additional information from solitary waves.

First, let us choose some numbers w11 and w12 which lie between 0 and A1. We register the time
when the first wave attains the level w11, the extremum w = A1, and the time when it drops below
the level w12. Knowing the velocity c1 we can then compute the relative coordinates ξ = η11 > 0 and
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Figure 1:
Solitary wave in case A = κ = 1, α = 0.9
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Figure 2:
Solitary wave in case A = κ = 1, α = −0.9

ξ = η12 < 0 such that w[c1](η1l) = w1l, l = 1, 2. Second, let us fix a number w2 which lies between 0
and A2. Similarly, for the second wave w[c2] we register the time when it either attains the level w2

(case (1)) or drops below it (case (2)). Then, using the arrival time of the extremum w = A2 and the
velocity c2 we can compute η2 6= 0 such that w[c2](η2) = w2. Note that η2 > 0 in case (1) and η2 < 0
in case (2).

We pose the following inverse problem: given b, µ, the points (η1l, w1l), l = 1, 2 with η11 > 0,
η12 < 0 on the graph of the first wave w[c1] and the point (η2, w2) with η2 6= 0 on the graph of the
second wave w[c2], determine the triplet S = (β, γ, λ).

3. PRELIMINARIES
Let us introduce some notation. We give to intervals of real numbers the following generalized meaning:

(d, e) = {x : d < x < e} in case d < e ; (d, e) = {x : e < x < d} in case d > e.

As usual, [d, e) = (d, e) ∪ {d}, (d, e] = (d, e) ∪ {e} and [d, e] = (d, e) ∪ {d; e}.
In turns out that it is easier for our purposes to operate with the inverses of the solitary wave

solutions w than w themself. Observing Thm. 1 we see that the function w(ξ) has two inverses
ξ+(w) and ξ−(w) which are defined for w ∈ (0, A] and satisfy ξ±(A) = 0, ξ+(w) > 0, ξ−(w) < 0 for
w ∈ (0, A) and lim

w→0+
ξ±(w) = ±∞. Moreover, Aξ+′(w) < 0, Aξ−

′
(w) > 0 and ξ+(w), ξ−(w) have

inflection points at w = 2A/3. We also emphasize that sign w = sign A and 1− w
A ∈ [0, 1).

By (5), the derivative of ξ(w) = ξ±(w) is a solution to the following equation for fixed w ∈ (0, A):

ξ′(w)− α = κ2w2
(

1− w

A

)
[ξ′(w)]3 . (8)

It is possible to solve (8) for ξ′(w) using Cardano formulas. But this leads to an expression which is
too complex for integrating. Therefore we express ξ(w) in a form of a functional series.

Lemma 2. The formula

ξ(w) =
a0

κ
I0(w) + α

∞∑

i=0

ai+1(ακ)iIi+1(w) (9)

holds for ξ = ξ±, where Ii(w) = Ii[A](w) are the following w- (and A-) dependent functions

Ii(w) =
∫ w

A

[
τ

√
1− τ

A

]i−1

dτ =





−2 ln
[√

A
w

(
1 +

√
1− w

A

)]
if i = 0

2Ai
i−1∑
j=0

(
i−1

j

)
(−1)j+1 (1−w

A )
i+1
2 +j

i+2j+1 if i ≥ 1
(10)
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and ai are generated by the recursive formulas

a3
0 − a0 = 0 , a1 = (1− 3a2

0)−1 , ai = (1− 3a2
0)−1

∑
0≤i1,i2,i3<i
i1+i2+i3=i

ai1ai2ai3 , i ≥ 2 . (11)

More precisely, the sequences ai starting with a0 = 1 and a0 = −1 give the functions ξ− and ξ+,
respectively. The series in (9) converges uniformly for any w ∈ [0, A].

The main ideas of the proof of Lemma 2 are as follows. We introduce the new variables y and
ζ = ζ(y) by

y = ακw

√
1− w

A
, ξ′(w) =

1

κw
√

1− w
A

ζ

(
ακw

√
1− w

A

)
. (12)

Then eq. (8) for ξ′(w) is equivalent to the cubic equation

[ζ(y)]3 − ζ(y) + y = 0 (13)

for ζ(y). We expand the solution of (13) in the form of the Taylor series ζ(y) =
∞∑

i=0
aiy

i. It can be

shown that this series is uniformly convergent in every compact subset of (−2/3, 2/3). Plugging it

into (13) we obtain (11). Finally, substituting y and ζ by (12) in ζ(y) =
∞∑

i=0
aiy

i and integrating we

deduce (9).

The first addend in (9) ξ0(w) := a0
κ I0(w) = ±I0(w)

κ represents the two inverses of the symmetric
bell-shaped solution, which occurs in case λ = α = 0 (case (f) of Thm. 1). By the relations I0(w) ∼
− 2√

|A|
√
|w −A|, Ii(w) = o (Ii−1(w)) as w → A and the uniform convergence of (9) we have

ξ(w) ∼ −
√
|w −A|
|A|

[
2a0

κ
+

Aα

2

√
|w −A|

]
as w→A. (14)

In view of (6) we transform (8) to the form

3δ(βc2 − γ)ξ′(w)− 2δ3/2λ = {3(c2 − b)w2 − µw3}[ξ′(w)]3 . (15)

To emphasize the dependence of ξ±(w) on the triplet S = (β, γ, λ) and the velocity c we write
ξ±(w) = ξ±[S, c](w)y.

Let us formulate a basic proposition providing a priori estimate for the difference of two triplets
S in terms of differences of the variables w and ξ.

Proposition. Let c2
1 6= c2

2 and we be given two triplets Si = (βi, γi, λi), i = 1, 2. Then for any
wi

11, w
i
12 ∈ (0, A1) =

(
0 , 3(c2

1 − b)/µ
)

and wi
2 ∈ (0, A2) =

(
0 , 3(c2

2 − b)/µ
)
, i = 1, 2 the following

estimate holds:

max
{
δ|β1−β2| ; δ|γ1−γ2| ; δ3/2|λ1−λ2|

}
≤ N(d1, d2)εξ + N(d1, d2)εw (16)

where di = (wi
11, w

i
12, w

i
2, ξ

i
11, ξ

i
12, ξ

i
2), i = 1, 2 contain the components

ξi
11 = ξ+[Si, c1](wi

11) , ξi
12 = ξ−[Si, c1](wi

12) , ξi
2 = ξ±[Si, c2](wi

2) , i = 1, 2 . (17)

Moreover,

εξ = |ξ1
11−ξ2

11|+ |ξ1
12−ξ2

12|+ |ξ1
2−ξ2

2 | , εw = |w1
11−w2

11|+ |w1
12−w2

12|+ |w1
2−w2

2|, (18)

and the functions N , N are bounded in every compact subdomain of D2 where D = (0, A1)2×(0, A2)×
(0,∞)× (0,−∞)× (0,±∞).

Let us describe the ideas of proof of Proposition. We note that eq. (15) yields a 3 × 3 linear
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system for S if we take it with some arguments w = ω11, ω12, ω2 and the values ξ′ = [ξ+[S, c1](ω11)]′

ξ′ = [ξ−[S, c1](ω12)]′, ξ′ = [ξ±[S, c2](ω2)]′, respectively. The determinant of this system is bounded
away from zero owing to the different signs of the values ξ′ = [ξ+[S, c1](ω11)]′ and ξ′ = [ξ−[S, c1](ω12)]′.
We can nicely go over from ξ′ to ξ in this system making use of mean value theorems. As a result we
can derive an estimate of S in terms of variables w and ξ. To derive an estimate (16) we use a simi-
lar technique writing down and analyzing a corresponding 3×3 system for the difference of S1 and S2.

4. MAIN RESULTS
The inverse problem posed in Sec. 2 can be written in the form of the system of nonlinear equations

ξ+[S, c1](w11) = η11 , ξ−[S, c1](w12) = η12 , ξ[S, c2](w2) = η2 (19)

for the triplet S = (β, γ, λ) with the data d = (w11, w12, w2, η11, η12, η2). Here η11 > 0, η12 < 0 and
ξ[S, c2](w2) = ξ+[S, c2](w2) in case η2 > 0 and ξ[S, c2](w2) = ξ−[S, c2](w2) in case η2 < 0.

Important questions related to the inverse problem are the uniqueness and stability with respect to
the errors of data. We take two types of errors into account. The first type is related to the inaccuracy
of fixing the levels of measurement of the waves. Levels used in the computations differ somewhat
from the values w11, w12, w2, where the actual measurements are performed. Let us denote these
approximate levels by w̃11, w̃12, w̃2. The second type is related to the inaccuracy of the measurement
of time moments during the experiment. This leads to errors in η-s. Let us denote by η̃11, η̃12, η̃2 the
approximate values of η11, η12, η2 obtained by means of measurements. Summing up, instead of (19)
we solve the problem

ξ+[S̃, c1](w̃11) = η̃11 , ξ−[S̃, c1](w̃12) = η̃12 , ξ[S̃, c2](w̃2) = η̃2 (20)

with the approximate data d̃ = (w̃11, w̃12, w̃2, η̃11, η̃12, η̃2) and the solution S̃ = (β̃, γ̃, λ̃). The solution
is stable with respect to the data if d̃ → d implies S̃ → S.

Proposition of Sec. 3 immediately implies the following

Theorem 2
(i) The solution of the inverse problem is unique.
(ii) The solution is stable with respect to the data and satisfies the estimate

max
{

δ|β−β̃| ; δ|γ−γ̃| ; δ3/2|λ−λ̃|
}
≤ N(d, d̃)εη + N(d, d̃)εw (21)

where N , N are the functions from Proposition and

εη = |η11−η̃11|+ |η12−η̃12|+ |η2−η̃2| , εw = |w11−w̃11|+ |w12−w̃12|+ |w2−w̃2|. (22)

Since the coefficients N and N are bounded in every compact subdomain of D2, the solution of
(19) is uniformly Lipschitz-continuous with respect to the data d in every compact subdomain of D.

The experiment related to the inverse problem involves measurement of the first wave at both sides
of the extremum w[c1] = A1. This leads to functions ξ[S, c1] with different superscripts +,− in the
first two equations of (19). As we mentioned, the values of ξ[S, c1] with different signs enables us to
estimate a determinant corresponding to the system from below in the proof of Proposition. We now
ask, how is the situation when the first wave is measured twice from a single side of the extremum?
In this case the system of equations corresponding to the inverse problem is

ξ[S, c1](w11) = η11 , ξ[S, c1](w12) = η12 , ξ[S, c2](w2) = η2 (23)

where the functions ξ[S, c1](w1l) occurring in first two equations have the common superscript: either
+ or −, depending on sign η11 = sign η12, and w11 6= w12. In case w11, w12 ∈ [2A1/3, A1), using
the strict monotonicity of ξ[S, c1]′(w) in the interval (2A/3, A), it is again possible to estimate in a
proper way the determinant from below and prove the uniqueness and stability for the system (23).
However, in the general case of w11, w12 and w2 the uniqueness for (23) doesn’t hold. Let us provide
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a counter-example.

Counter-example. Due to (a) in Thm. 1 we have

ξ±[S, c](w) ∼ ∓ 1
κ

ln |w| as w → 0. (24)

For given two triplets Si = (βi, γi, λi), i = 1, 2 we denote

κi
j =

√
c2
j − b

δ(βic2
j − γi)

, αi
j =

2δ1/2λi

3(βic2
j − γi)

, Aj =
3(c2

j − b)

µ
, i, j = 1, 2. (25)

We now observe that for any ε > 0 and a01, a02 ∈ {−1; 1} we can find Si, i = 1, 2 such that

β1 6= β2, γ1 6= γ2, λ1 6= λ2 , |Ajα
i
jκ

i
j | < 1 , i, j = 1, 2 ,

sign
[
2a0j

(
1
κ1

j
− 1

κ2
j

)
+

Aj(α1
j−α2

j )
2

ε
2

]
= sign

[
a0j

(
1
κ1

j
− 1

κ2
j

)]
, j = 1, 2.

sign
[
2a0j

(
1
κ1

j
− 1

κ2
j

)
+

Aj(α1
j−α2

j )
2 ε

]
= −sign

[
a0j

(
1
κ1

j
− 1

κ2
j

)]
, j = 1, 2.

(26)

Let us fix some pair a01, a02 ∈ {−1; 1}. Choosing sufficiently small ε > 0 and triplets Si, i = 1, 2
satisfying (26) from relations (14) and (24) we deduce the inequalities

sign
[
ξ[S1, cj ](ω1j)− ξ[S2, cj ](ω1j)

]
= −sign

[
ξ[S1, cj ](ω2j)− ξ[S2, cj ](ω2j)

]

= sign
[
ξ[S1, cj ](ω3j)− ξ[S2, cj ](ω3j)

]
, j = 1, 2 (27)

where |ω1j | = ε, |ω2j − Aj | = ε, |ω3j − Aj | = ε/2, j = 1, 2 and ξ[Si, cj ] = ξ+[Si, cj ] in case a0j = −1
and ξ[Si, cj ] = ξ−[Si, cj ] in case a0j = 1. Relations (27) imply that there exist w11 ∈ (ω11, ω12), w12 ∈
(ω12, ω13) and w2 ∈ (0, A2) such that

ξ[S1, c1](w1l)− ξ[S2, c1](w1l) = ξ[S1, c2](w2)− ξ[S2, c2](w2) = 0 , l = 1, 2. (28)

Consequently, (23) has two solutions S1 6= S2 for such w11 6= w12 and w2.
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